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ABSTRACT

This document outlines the HehcopterSlung Load Simulation (HSLSIM) Toolbox which is a set of
utilities for the simulation, analysis and display of the fhght-dynamic response of hehcopters with
various extema110ad configurations within the MATLABill software environment. Instructions
and examples are provided for its operation and subsequent modifications. The helicopter
studied is the CH-47D, with the load types including rectangular and cylindrical containers as
well as plate and airfoil shapes.
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Helicopter Slung-Load Simulation Toolbox
for use with MATLAB®

Executive Summary

The motivation behind this task comes from a requirement by the Austrahan Army to
establish the safe operating limits of helicopters with externally slung loads inilight. The
dynamic behaviour of slung-loads can be extremely difficult to predict and depends on
such things as the load shape and density, the helicopter airspeed and control inputs as
well as the sling configuration. Many incidents have been reported where the load has
oscillated uncontrollably or completely diverged due to aerodynamic excitation resulting
in damage and/or loss of equipment. The interaction of these elements is not well
understood. Hence, a major requirement of the study was to develop a comprehensive
helicopter slung-load model to provide a better understanding of the system dynamics
and various effects involved. Since the initial development the model has been refined,
extended and packaged together in the form of a Toolbox that is accessed from within the
MATLAB® numerical computing software environment.

This document outhnes the Helicopter Slung-Load Simulation (HSLSIM) software package
and provides instructions and examples for its operation and subsequent modification.
The graphical user interface is presented along with the various configuration dialogs and
output windows generated during each stage of typical operation. These dialogs include
configuration options for the helicopter, loads, control inputs and initial conditions. The
three main stages of operation are: Balance, in which the load(s) are balanced in the free-­
stream below the fixed helicopter; Trim, where the helicopter and loads are both trimmed
at the ilight state specified and; Simulation, in which the helicopter-load system response
to specified control inputs is simulated over the time range. The simulation may then be
replayed either from within MATLAB® or in an external Virtual Reahty Modelling
Language (VRML) browser. As an example, the trim and simulation procedure for a CH­
47D helicopter carrying a 3000L water tank is given. Using the graphical user interface, the
helicopter-load system is trimmed and flown at a nominal speed (chosen as 100ft/ s) with
a lateral doublet input. Then, using a simple script to automate the process, the same
configuration is flown over a range of airspeeds and load masses. Two methods for
presentation of the resulting data are then shown.

With the Helicopter Slung-Load Simulation Toolbox, the Australlan Army will be able to
gain further insight into the dynamic behaviour of various loads under different fhght
conditions. The user can examine the characteristics of particular helicopter-load
configurations, or assess the performance of such configurations over a range of different
fhght states.
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1. Introduction

The Helicopter Slung-LoadSimulation package (HSLSIM) has been developed at the Defence
Science and Technology Organisation (DSTO) as a fundamental part of Task ARM 07/038 and
precedmg tasks sponsored by Australian Army Aviation. In the past, the operations of
helicopters carrying externally slung loads has often been limited and, in some cases,
seriously hindered by stability and control problems. A program was consequently initiated
within DSTO to use computer modelling and simulation to assist in defining the operational
limits of the Australian Army Chinook CH-47D helicopter when carrying shmg loads. The
first phase in this program entailed the development of a helicopter slung-load model for
simulation and analysis in order to provide a better understandmg of the system dynamics
and various effects involved.

HSLSIM was written in MATLAB®, a high-performance numerical computing environment
that is built around matrix mathematics, and therefore amenable to dynamic modelling and
simulation work. MATLAB® also provides an ideal workplace in which various analyses can
be conducted following the simulation itself.

2. System Description

The follOWing section provides a general description of the system, includmg the model
formulation and implementation. Fora more detailed description, refer to the previous report
by Stuckey [1].

2.1 Model Formulation

Helicopter slung-load systems fall into a class of multibody systems approximated by two or
more rigid bodies connected by massless links. The links can be considered either elastic or
inelastic, although the rigid-body assumption excludes any helicopter or load elastic modes.
Typically, the system is characterised by the configuration geometry, mass, inertia, and
aerodynamic behaviour of both helicopter and load, as well as the elastic properties of the
links.

In general terms, the system of interest consists of a single helicopter supporting one or more
loads by means of some suspension. The model is comprised of n rigid bodies, with m
straight-line links supporting a single force in the direction of the link. If the links are
modelled as inelastic, c::; m constraints are imposed on the motion of the bodies and the
system has d = n *6 - c degrees-of-freedom (do£). If the links are modelled as elastic, there are
n*6 dof.

A number of Simplifying assumptions have been made in the model. These include the
exclusion of cable mass, cable aerodynamics and rotor-downwash effects. Despite these
limitations, the system has proven adequate for simulation studies [2] in which the low­
frequency behaviour is of primary interest and the helicopter is initially trimmed in forward
flight.
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The simulation model used is based on the helicopter slung-load system introduced by
Cicolani, et al [3]. In this formulation, the general system equations of motion are obtained
from the Newton-Euler equations in terms of generalised coordinates and velocities.
Following the exphcit constraint method, which utihses d'Alembert's principle, the system is
partitioned into coordinates such that the motion due to cable stretching is separated from
that due to rigid-body, coupled dynamics. As a consequence, the constraint forces appear
exphcitly and a solution to the resultant generahsed accelerations is determined by assuming
a simple spring model for the cable.

It is also possible to obtain a solution to the inelastic approximation by nulhng the stretching
coordinates to obtain an exphcit relation for the suspension forces. The result is
computationally more efficient than conventional procedures and is readily integrated with
the formulation for elastic suspension. Another benefit of the formulation is that it is easily
apphed to complex, multiple body systems, as in the software package presented. Aside from
the core helicopter model, all code development has been done in the MATLAB® [4] numerical
computing environment, which provides a high-performance language, amenable to
modelling and simulation type work.

2.2 Implementation in MATLAB®

The Helicopter Slung-Load Simulation program HSLSIM consists of several modules, written
in the MATLAB® language. These include the main script, an optimisation routine, a
differential equation solution, an integration function, several flight-dynamic models, and
various output and replay functions. There is also a graphical user interface for simphfied
control of the primary program functions. Alternatively, the simulation can be run through a
main script, which generates the control inputs, configures the hehcopter-Ioad system
properties (geometric and inertial), sets the initial system state, and then executes the trim and
integration functions. The integration function is problem independent and based on an
algorithm which combines various order Runge-Kutta formulas for the solution of ordinary
differential equations. It requires an integration function tailored to the problem at hand,
which provides a point solution to the differential equation. For the helicopter slung-load
simulation, this function represents the core of the code and implements the aerodynamic
models for both helicopter and loads.

Initially, an approximated model of the CH-47B, named HSL, and based on a set of hnearised
state-space representations at several airspeeds was used. This model was derived from a full
nonhnear simulation model developed by the Boeing Vertol Company and later adapted for
use atthe NASA Ames Research Center [5] [6]. However, the model was inadequate for large
manoeuvres or long simulations, so a higher fidehty model was introduced. This model,
named ROTORGEN, was developed by Heffley [7] for the US Army Aeroflightdynamics
Directorate under a NASA contract to Hoh Aeronautics Inc. It is described as a "minimal­
complexity generic rotorcraft model" intended for manned simulation of large military
helicopters and, in particular, the CH-47D Chinook tandem rotor helicopter, though it is also
capable of simulating CH-53D and UH-IH helicopters. ROTORGEN implements a rotor
inflow model based on Glaurt's representation of thrust, with the orientation (incidence) of the
tip path plane defined by a set of flapping equations and the body forces based on a quadratic
fluid-dynamics formulation, apphcable to low-speed flight. The model is actually a
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combination of two existing flight models: the Extended Stability Derivative (ESD) model
developed for NASA, and the ROTORGEN thrust model developed for the US Army. As
such, the ROTORGEN model has a modular structure, which combines several features of the
original ESD model. These include a primary Fhght Control System (FCS), rotor and body
forces, ground effects, simple slung load dynamics, and a Stability and Control Augmentation
System (SCAS). HSL was written in MATLAB®, and easily integrated into the simulation code
structure. ROTORGEN, on the other hand, was written in Fortran-77 and therefore required
an external (MEX) routine to interface with the MATLAB® environment and the simulation
code. It appears as a compiled, Dynamic Link Library (DLL) file in the base directory.

HSLSIM also offers the choice of several generic loads including a box, cyhnder, plate and
airfoil shapes. The box shape was derived from a MILVAN container - a common hehcopter
cargo used in many commercial and military operations. The dimensions of a MILVAN
container are 20 x 8 x 8ft and the mass typically varies from 4000 lb (empty) to 20000lb (full).
The aerodynamic model for the MILVAN was developed by Ronen [8] and constitutes a
combination of aerodynamic models obtained from several pubhshed wind-tunnel test
results, including unsteady aerodynamic effects. However, the actual model used, while
comprehensive, is based purely on static data. The cyhnder and plate shapes are all compiled
from ESDU data sheets [9] and Hoerner [10] [11], while the airfoil- a finite-span N ACA 0012
profile - is extracted from the Comprehensive Analytical Model of Rotorcraft Aerodynamics
and Dynamics (CAMRADIJA) code [12].

Normally, the simulation model is first initiahsed with a set of flight conditions and given a
pre-determined sequence of control inputs to be used in the computation of a response. The
model is then trimmed according to the specified flight conditions until an equilibrium state is
reached, and then integrated over the time range to produce a set of simulation data. The data
comprises the hehcopter and load positions, orientations, the control inputs and geometric
information regarding the hehcopter-Ioad configuration. As for most aeronautical systems
[13], the positions are specified in right-handed Cartesian axes (with positive-z downward)
and the orientations in Euler angles.

In addition to the trim and simulation software, a function for the replay of simulations was
written. This function, REPLAY, displays rudimentary models of the hehcopter and load(s) in
3 dimensions, with the controls in a separate window. A menu window allows the user to
start, stop, pause and resume the simulation replay, as well as providing several options for
the display.

The simulation output can also be exported to a file in the Virtual Reahty Modelling Language
(VRML) format. Using a VRML browser, or a WWW browser plug-in, such as the Cortona
VRML plug-in [14], the simulation can then be replayed with higher detail in a similar 3­
dimensional space in real time. Furthermore, the file can be compressed into a compact binary
format using GZIP [15], which can still be interpreted by the VRML browser, but is small
enough for fast transmission over the Internet.

3
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3. User's Guide

3.1 Getting Started

The graphical user interface GHSLSIM provides simplified configuration and control of the
helicopter-load system for trim and simulation. Many options are automated andhrnitedfrom
the full capability of the program, which is discussed in Section 3.7.

The program provides various configuration options, as well as controls for balance, trim and
simulation stages. There are also controls for the output and display of the simulation, once
run. Balance refers to the determination of an equilibrium state for the load(s) only, slung
beneath a fixed helicopter. This intermediate step is performed to attain a state closer to the
actual trim state than the default, initial one specified and is usually conducted prior to the
trim stage. Since the helicopter is fixed during this stage, it will generally not be sufficiently
trimmed following balance. Therefore, it is necessary to trim the helicopter and load(s) using
the trim control, regardless of whether it has been balanced or not.

GHS15IM can be started by executing the following command from inside the MATLAB®
workspace:

» ghslsim

If a configuration file exists, it may be loaded automatically by adding its name after the
command. For example, executing:

» ghslsim ghsldemo_3klt

will load the configuration options stored within ghsl demo_3klt. mat. If no file is specified,
the default configuration file, ghsl default. mat, is used.

3.2 Main Interface

The main interface is shown in Figure 3.1. There is a list of commands along the top menu bar
as well as a set of fields and buttons that constitute the simulation configuration and control
interface. The File menu commands are accessed through the top menu only, but the
Configuration Simulation and Output commands can all be accessed either through the top menu,
or on the main interface paneL
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Figure 3.1: Simulation Configuration Inteiface

3.2.1 File Menu Commands

As well as specifying a configuration file on the conunand line, it is J20ssible to load a
configuration file from the file menu via the conunand: "Ie ..... Open. This loads the
configuration details and the simulation output data, if present, into the program workspace.
If a file with simulation data is loaded, then the user may execute any of the Output
conunands on the main interface without having to re-nm the simulation.

In order to save a configuration, or both the configuration and any simulation outrut data, the
user simrly creates a new file, or selects an existing one from the "Ie ..... Savor the
~ ..... Save $' menu conunands. If no file has been specified, the default file,
ghsldefault . mat in the current working directory is used.

With the QI:1e conunand, the program expects a full configuration file with all compo~nts
rresent, and will produce a warning otheIWise. Similarly, saving to file using the Save or
Save s'conunands saves all of the configuration infonnation and simulation data, if present.
If the user wishes to load or save only one component of the configuration, then they must use
the import or export conunands, respectively. The File ..... i'ni"PQrt Config Data conunand will
import whatever components are present in the chosen partial-configuration file. All other
components will remain as they were, rrior to importing. The ile ..... Export Config Data has
several sub-conunands: ;Simulation, elicopter.( oad ContrOl, and Trim. These can be used to
export single components from the configuration, which can later be imported as detailed
above.
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Preferences for the pro gram are set in the main menu via: File ..... Preferences.... These include
three fields for the location of a VR11L-capable Web Browser, the VRlvIL Directory and a
CZIP Executable, as shown in Figure 3.2.

Figure 32. Program Preferences Interface

If not present, or incorrect the Web Browser location can be typed directly into the text field, or
located by simply clicking the button and manually searching through the Windo ws directory
structure. The VRML D1rectory is the location of all helicopter and load VRlvIL models
included in the distribution, and the directory into which any generated VRlvIL simulations
will be written. This string ends with a trailing directory delimiter. If the CZIP Executable is
installed, the last field may be filled, or located as with the Web Browser.

The preferences also include four checkboxes for various windows and screen output that can
be activated during balance, trim, and simulation. These are the Replay Window, the Variable
Tracking Wndow, the Counter Window, and the Verbose Output flag The first two will be
explained in more detail in Section 3.4. The Counter Window is just a visual indicator of the
progress during simulation and post-processing stages. Checking the Verbose Output
preference will cause the program to display numerical data during trim and simulation
iteration loops.

3.2.2 Simulation Configuration

Each of the fields and options displayed in the main interface are required by the simulation.
The S1mulatlOn time tN, Integration tzmestep dt, and Number of steps N are all related via the
following equation:

(1)

Altering the SimulatlOn t1me will also adjust the Number of steps and altering the Integration
timestep or the Number ofsteps will adjust the Simula tlOn time, such that all parameters conform
to the above relationship. In general, a smaller tlmestep will yield more accurate simulation
results and reduce the possibility of numerical error and subsequent divergence. For most
configurations, a value between 0.05 sand 0.1 s (20 Hz and 10 Hz) should be sufficient
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The next field defines the Number ofloads, which can be any integer between zero and three;
zero referring to the helicopter-only configuration. The helicopter attachment point (hook) to
which each load's slings are attached is automatically determined. For unusual sling
configurations, the user must write a script, as detailed in Section 3.7.2, to construct the model
and run the trim and simulation.

The following three fields set the Trim airspeed, in each inertial axis, at which the helicopter
will be trimmed. These are (in ftl s) the Forward speed, rate of Descent, and Sideslip. It is not
possible to trim the aircraft with a constant (non-zero) angular rate, such as in a steady turn.
The last field sets the trim altitude of the helicopter, in ft.

Options presented in the interface comprise the Simulation axes, Angular representation,
Simulation type, Sling model, Trim routine and Simulation routine. The Simulation axes define
which axes are to be used in the trim and simulation. Both longitudinal and lateral axes
constitute a reduced subspace in which the system is free to respond (reduced degrees-of­
freedom). The longitudinal axes include surge, heave and pitch motion, while the lateral axes
include heave, sway, roll and yaw motion. The combined axes represent a full, unconstrained
system with the number of degrees-of-freedom equal to n*6 for an elastic sling configuration,
where n denotes the number of bodies (helicopter + loads). Unless there is a specific need to
excite only the longitudinal or lateral modes, it is recommended that the combined axes be
used.

The angular displacements and rates for the system can be represented using either Euler
angles or quaternions. However, this only applies to the simulation stage, as the helicopter and
loads can only be balanced and trimmed using Euler angles. For most manoeuvres, an Euler
representation is adequate.

1£ the Control System Toolbox [16] is present within MATLAB®, it is possible to simulate the
system response using a linear approximation, which is much faster than the nonlinear
solution. These constitute the two Simulation types available to the user. However, since the
linearised model is obtained by computing a Jacobian at trim, it is inaccurate for anything
other than very short runs. In fact, given the high nonlinearity of the coupled helicopter-load
system, a linear simulation is really only suitable for helicopter-only configurations. 1£ the
Control System Toolbox is not present, a nonlinear simulation must be run.

The two Sling models that can be employed are inelastic and elastic, each incorporating a
significantly different solution to the multi-body equations within the balance, trim and
simulation stages. The inelastic model uses an explicitly constrained representation and
therefore, has less dof than its elastic equivalent. Typically, the variables used in an inelastic
model include the helicopter position and orientation, the orientation of one or more cables
and the orientation of the load(s). The variables used in an elastic model include the position
and orientation of both helicopter and load(s). Generally speaking, less dof means a lower
complexity and since the only matrix inversion required for solution is calculated explicitly, it
also means a faster solution. In addition, the inelastic model has a higher degree of
orthogonality, and is consequently much better suited for trim optimisation. This will be
explored in the examples that follow (Sections 3.6 & 3.7). Note that during balance and trim, it

7
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is possible to switch between these two model representations, whilst retaining the current
trim state.

Just as there are two methods for computing the system response, there are also two methods
for finding a solution for the balanced and trimmed state of the helicopter-load system. If the
Optimization Toolbox [17] is present within MATLAB®, a more efficient nonlinear least
squares routine (lsqnonlin) is used. Otherwise, the basic simplex routine included with the core
distribution (frninsearch) is used. The nonlinear least squares algorithm iteratively determines
a solution based on the accelerations, or external forces and moments in each axis. The
simplex algorithm, on the other hand, iteratively determines a solution based on the sum of
squares of all accelerations in the model, which is why itis much less efficient. For this reason,
it is highly recommended that the Optimization Toolbox be activated.

The last option within the main interface sets the order of the integration algorithm within the
Simulation routine. This algorithm is a fixed step-size Runge--Kutta integrator and can be of
2nd/3rd order (ode23), 4th/5th order (ode45) or 7th/8th order (ode78). Obviously, the higher
order integrators are more accurate; however, they are also more costly in terms of processing
time since they make more calls to the force determination function. The lower order
integrators can also cause numerical divergence due to error, particularly for stiff elastic
models, so a balance must be decided upon. The default order for new simulation models is
4th/5th, which has proven adequate for most of the cases tested.

3.3 Configuration Interfaces

There are four basic configuration interfaces, which must all be set prior to simulation. These
consist of the Helicopter Configuration, the Load Configuration, Controls Configuration, and Trim
Initialisation.

3.3.1 Helicopter Configuration

The Helicopter Configuration panel, shown in Figure 3.3, incorporates options to select the
Helicopter type, the Simulation model to be used, and the corresponding Weight and Inertia.
Supported Helicopter types include the Bell UH-1H Iroquois, Boeing CH-47D Chinook, and
Sikorsky CH-53D Sea Stallion. Both the UH-1H and the CH-53D have one hook and the
CH-47D has three hooks for the carriage of external loads.

8
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Flgure 3.3: Helicopter ConflguratlOn Inte1ace

The SnnulatlOn model can be selected from a simple linearised state-space model (HSL), or a
full nonlinear model, based on the ROTORGEN core (lvIEX). As mentioned inSection 2.2, the
linearised helicopter model is only an approximation and, although considerably faster, it is
much less accurate than the full nonlinear model. The J\IIEX model also incorporates a Stab 11 ity
& Control AugmentatlOn System, which can be swikhed on or off via a checkbox on the panel

Text fields for the Weight and Inertia als 0 allow for adjustment of these athibutes from within
the graphical interlace. The inertias include primary axes components lxx, I¥Y,lzz and Ixz. If
desired, it is possible to set any of these to infinity (inf), thereby constraining rotation in the
corresponding axis. This will be explained in more detail in Section 3.7.2.

3.3.2 Load(s) Configuration

Up to three loads can be configured via the load interface, shown inFigure 3.4. For each load,
there are options for the Load type and Sling configuratlOn, as well as fields for the Load weight,
Load inertia, Size, Attachment locations. There are also fields for the Cable length, Stiffness and
Damping. Load types currently supported are box, cylinder and plate geometries. The box load
has the most accurate aerodynamic data, based on a combination of experimental and
theoretical data, whereas the cylinder and plate loads are based on theoretical data only.

The Load we ight and Load inertia in each primary axis can be edited in the corresponding text
boxes and, as with the helicopter, they may be settoinfinityin order to constrain the rotation.
Also, the size of the load can be specified, although this is merely for display purposes and
has no effect on the resulting dynamics of the systeIn

9
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Figure 3.4: Load(s) Configuration Interface

For the Sling configuration, the user has a choice of four basic configurations, illustrated in
Figure 3.5. These are: Single point, Multiple point, Bifilar and Tandem. Each configuration has a
different number of (load) attachments, the offsets for which are listed next to the
configuration buttons. The Single point configuration has one attachment, the Multiple point
has four, the Bifilar has two and the Tandem has four as well. It is crucial to note that the order
in which the attachments are listed is important. For two attachment points, the forward
attachment must be listed first and the aft second. For four attachment points, the order is:
forward-starboard, aft-starboard, aft-port, forward-port. Each offset is specified relative to the
load axes, whose origin is located at the load cg, so most standard configurations (with
attachments above the load cg) will have equal negative z-offset values.

Single point

Figure 3.5: Sling Configurations
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With the graphical interface, the corresponding attachment points on the helicopter are
automatically determined. Table 3.1 outlines the helicopter attachment point index for various
numbers of loads and each load's sling configuration. The helicopter attachment points, or
hooks, are numbered from one to three in the order: forward, middle, aft. So, for example, two
bi£ilar loads would occupy hooks (1 & 2) and (2 & 3). One tandem load would occupy hooks
(1 & 3). One single point, one bi£ilar, and one multiple point would occupy hooks 1, (2 & 3)
and 3 respectively, and so on. As mentioned previously, it is possible to define the attachment
points explicitly in a script to construct the modeL

Table 3.1: Helicopter Attachment Point (Hook) Index

LOAD NUMBER OF LOADS

CONFIGURATION 1 2 3

Single point 1 1,3 1,2,3

Multiple point 1 1,3 1,2,3

Bifilar 1,3 (1,2), (2, 3) (1, 2), (2,3), (2, 3)

Tandem 1,3 (1,2), (2, 3) (1, 2), (2,3), (2, 3)

As well as the sling configuration, the cable lengths and their elastic properties must be set.
Using the graphical interface, the Cable length, Stiffness and Damping for each cable are set to
the same values specified. Once again, it is possible to set these individually, as will be
explained in Section 3.7.2. The last checkbox shown in the load configuration interface is to
enable Cable slack, which imposes a zero-force when a cable is under contraction. Normally, all
cables will be under tension, so this parameter will only tend to become important when the
load has become unstable and diverged. Load bounce is also possible, but this is usually the
result of pilot-induced oscillations, which do not occur in the simulation model. However, the
main reason that this option has been left unchecked as a default is because the balance and
trim optimisation routine can have difficulty in finding a solution for cables with slack. This is
due to the discontinuity at the point of slack and invariable nature of the cable force when
contracted. If every cable becomes slack (zero cable-force) during balance or trim, then the
optimisation direction becomes indeterminable and the routine will falter.

3.3.3 Controls Configuration

The Controls Configuration panel (Figure 3.6) is slightly different than the previous two
configuration panels, in that it allows the user to construct control input sequences by adding
any number of basic input types.

11
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Figure 3, 6', Controls ConfiguratlOn Interface

There are four tabs - one for each control device - including Lnngitudinal stIck, l..nteral stick,
Pedals and Col1ective Stick. The Input Types can be a step, pulse, doublet, rate-feedback or none and
each input has a set of parameters to define its shape. These can be explained more clearly
using the diagrams in Figure 3.7. A step input is the simplest, and defined by a Start Time,
Ramp time and NIagnltude. These are, respectively, the time at which the input is started,. the
time taken to reach maximum amplitude and the value of that maximum amplitude. A pulse
input has those same three parameters, plus a Ho Id time, which defines the length of time the
control is held at its maximum position (rnagnitude). A doublet is essentially two pulse inputs
- one positive pulse immediately followed by a negative one - and the Start Time, Ramp time
and NIagnitude are all the same as previously defined.

IRate-feedback I ~ hold time.

I

Figure 3, 7. Control Input Types

12
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The rate-feedback input type is quite different to the former three inputs. It is defined by a Start
time, a Hold time and a Rate-gain factor. The Hold time basically defines the period during
which the rate-feedback control is active and the Rate gain defines the magnitude of control
feedback employed.

This input is a simple automatic control that augments the commanded controls defined using
the above inputs. Equation 2 describes the algorithm used:

6b =K j (q-O.5 *dB)

6a =K2 (p-O.5*d¢)

6r =K3 (r)

6c =K4 (iif

(2)

where 5b denotes the longitudinal stick control, 5a denotes the lateral stick, 5 r denotes the

pedals and 5c denotes the collective stick. Kl, ..., K± are the rate-feedback gains for each

control. The angular body rates in pitch, roll and yaw are p, q, and r, respectively and the rate
of descent is :&. The pitch and roll angles perturbed from their trim states are denoted by dB

and d¢. This rate-feedback law has proven sufficient for steady-level flight apphcation, such

as initial correction of trim and recovery from a commanded manoeuvre.

Each control input sequence is constructed by repeatedly adding basic input commands with
the Add to Control button and, if necessary, clearing the entire input sequence with the Clear
Control button. The basic inputs are superimposed on to the current control sequence and any
periods of rate-feedback are marked (shaded). Since the rate-feedback essentially replaces any
commanded input when it is active, it is unnecessary to have any such input during those
periods. However, the rate-ftedback can be utilised for manoeuvre recovery. So, for example,
rather than employing a pulse input, one could simply use a step input followed by a rate­
ftedback input, as the automatic control will tend to return the system and controls to a state
close to their trim state anyway.

Note that the actual commanded input or rate-feedback for each control is offset by its trim
position, as determined during the trim stage. This must be kept in mind when generating the
control input sequences, since the controls may exceed their hmits when adjusted by their
trim values and be truncated accordingly.

3.3.4 Trim Initialisation

The last configuration interface sets the initial conditions prior to trim. Shown in Figure 3.8,
these variables set the 'initial guess', which the balance and/or trim optimisation stages begin
from. Fields include: the Initial Attitude, incorporating bank, pitch and azimuth angles; and the
Initial Controls, Longitudinal stick, Lateral stick, Pedals and Collective stick. The default for all of
these is zero, except the Collective stick, which is set to half of its upper hmit.

13
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Figure 3.8: Initial Conditions Interface

3.4 Simulation Controls

Once the helicopter and loads have been specified, and the initial conditions set the
helicopter-load system can be Balanced and Trimmed. Then, assuming that the control inputs
have been constructed, the simulation may be Run. S1rict1y speaking, itis not necessary for the
systemto be balanced, or 1rimmed before nmning. However, itis strongly advised that thes e
stages be followed in order, to minimise disturbance during the initial period of simulation.
The three stages under the heading of Simulation are described in the following section.

At any point during the balance!trim! simulation stages, the system state and output, if
present can be saved using the file menu. In fact, it is recommended that the user saves to (a
different) file regularly, should they wish to repeat a certain stage without having to re-run all
preceding stages.

3.4.1 Balance Loads

Becaus e the 1rimoptimisation can be a difficult task for multi-body systems, it is oftenwise to
balance the load(s) beneath the helicopter before trimming the complete configuration.
Without doing so, the optimisation routine may get trapped in local minima, or take an
excessively long time to reach convergence.

Essentially, this entails holding the helicopter to some fixed position, and attitude while
conducting an external force minimisation on each loaduntil they reach equilibrium. The load
subs ystem is significantly easier to balance, andwhen converged, provides an initial guess of
the system state that is generally much closer than previously set It is also possible for the
user to switch between inelastic and elastic sling models, thereby simplifying the sling-load
model even further for initial balance optimisation.

Figure 3.9 shows the REPLAY display during the load balance stage. The Start, Pause, and Stop
buttons are all deactivated during this iterative procedure, and the display frequency slider
(jreqn) and Tip Trails checkbox have no effect here. However, the viewpoint azimuth (aZim)
and elevation (dev) shders, and the Erasemode checkbox can all be adjusted at anytime. Along

14
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with the main three windows (Display, Menu and Controls), a window displaying trace plots of
selected variables that are used in the optimisation is shown. For balance, these include the
load angles, ¢ , (J, and If! , as well as the logarithm of the out-of-balance force component, F.
TItis last variable gives an indication of the system's balance during optimisation and should
converge to zero. The balance optimisation can be stopped at any time by simply pressing the
STOP button in the variable-tracking window.

. , , • '" .. .. , , . ernt@ IIlllWl'lill ~I@
File Edit View Insert Tools Window Help Stall

Pause

Slop

Close I

~
1 freqn.. ..-', 90 azim

r ~
o elev

\ ......-.

"'" ~
"'" Elasemode

r Tip Trails

I o. as 1/1 I
Ie Realime I

0 ~@

Eaf
~

.. . ... .dm0

¢> e 4' log(F)

EJOSjEI;]
It ·0.0000 ·20.6813 0.0000 0.0769

"

Figure 3.9: Loads Balance Display

If the Verbose Output flag has been checked in the program preferences, the optimisation
routine writes information to the MATLAB® command window as shown in Figure 3.10. For
the balance and trim optimisation, this information includes the iteration number, the
cumulative number of function evaluations, the residual, step size and directional derivative.
The residual should approach zero, and both the step size and directional derivative should
get smaller as the iterations progress, More detail on these indicators is available in the
Optimization Toolbox documentation [17]. When the optimisation has finished, the final
values for each of the variables shown in the variable tracking window are hsted.

15



DSTO-TN-0855
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File Edit View Web Window Help

[j ~ I ~ ~ ~ Il() ('"".lil I ,. I ? ICurrent Directory: C:\[)ocuments and Settings\stuckeyWy Documents\Matlab" J
:;:.) ghslsim

Sal anci ng INELASTIC System ...

Step-size
1

1.44
0.427

1. 36
0.988

Iterati on Fune-count Res; dual
1 -1 0.058:3-132
2 13 0.000280932
3 21 0.000147183
4 30 2.52608e-006
5 38 6. 38886e-009

Optimization terminated successfully:
Gradient in the search direction less than tolFun
Gradient less than 10*(tolFun+tolX)

phi theta psi
--------+--------+--------+--------
-0.0000 -20.6813 0.0000 0.0000

Di rectional
derivative
-0.111

-0.00107
0.000149

2. 17e-005
-4.66e-009

Figure 3.10: MATLAB® Command VVindow Output

A suggested procedure for balancing the load(s) under the helicopter is as follows:

1. First set the initial conditions for the helicopter, if a good estiInate is known, using the
TriIn Initialisation interface.

2. Set the Sling model to inelastic in the Main interface, then balance.

3. If the load has balanced adequately, set the Sling model to elastic and balance again.
Otherwise, re-run the balance optimisation, possibly modifying the initial conditions
beforehand. This may be necessary if the routine is having trouble converging to a
balanced state.

If one does not require an elastic siInulation, then the third step is unnecessary. Once
balanced, the user may go on to triIn the complete system. Since the balance stage operates
solely on the load and does not call the ROTORGEN helicopter model, it is less prone to
accuracy limitations. However, these may be encountered during the trim stage, as will be
explained next.

3.4.2 Trim System

Although not necessary, it is advisable to trim the helicopter-load system prior to simulation
to avoid any initial disturbance due to out-of-balance forces. Depending on the fidelity of the
siInulation required, it is possible to utilise an inelastic sling model, or an elastic one, and the
triInroutine can handle either. The REPLAY display, shown in Figure 3.11, is much the same
as that rendered in the balance stage, apart from the addition of the control input variables.
These include, in order, the longitudinal stick Db' the lateral stick 0a' the pedals or' and the

collective stick Dc' The controls window is also activated during this stage, for a clearer

indication of the control stick displacements. They are generic slider-type controls and
incorporate: the longitudinal and lateral stick, placed vertically and horizontally in the main
axes; the pedal controls, placed horizontally below the main axes; and the collective stick,
placed vertically to the right of the main axes. The controls are normalised with respect to
their hard limits in all of the display axes.
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1-) REPLAY - Dynamic System Reponse Path Display
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Figure 3.11: System Trim Display

If desired, one can change the viewpoint azimuth and elevation, and the Erasemode during
trim using the controls in the Menu, and as with the balance stage, it is possible to stop the
trim optimisation at any time using the button displayed.

The suggested procedure for trimming the helicopter-load system is:

1. First set the initial conditions for the helicopter, and balance the load under it.

2. Trim the system using either in inelastic sling model, or an elastic one as required. It is
not necessary to do both.

3. If the system has not reached trim, re-run the trim optimisation. Check that the load is
balanced. If the system still does not trim, try a different set of initial conditions.
Failing this, it may be necessary to fly the helicopter and load into an approximate
trim state through simulation. See Section 3.7.2 for a further discussion.
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Note that for some configurations, it may be difficult to find a satisfactory trim point. For
example, a lightweight load flown llilder a helicopter at high speed will tend to be very
llilstable. Moreover, it may not be physically possible to attain trim at all, such as the case
when a load is too heavy for the helicopter to lift. The user should be aware of the limitations
specific to each configuration before attempting trim or simulation using GHSLSIM.

Unfortllilately, there are also accuracy limitations in the ROIDRGEN (MEX) helicopter model.
MATLAB®, and the models generated within the environment, such as the loads, are all
intrinsically double-precision, whereas the ROTORGEN model is much less accurate. As a
consequence, trllilcation error may cause the trim optimisation to get 'stuck' in a discrete state,
or it may not converge to a satisfactory solution. Often however, the trim optimisation will
reach a satisfactory state within the maximum number of iterations, even though the function
may suggest the optimisation be re-rllil (possibly increasing the maximum number offunction
evaluations). If it appears to have done so, according to the residual error, then it can be
considered correctly trimmed.

3.4.3 Run Simulation

The REPLAY window appears again for the simulation stage, shown in Figure 3.12. In the
variable tracking window, the helicopter inertial velocities (:&, :#, &) are plotted, as well as the

helicopter angles and control inputs. The REPLAY function is still called iteratively, so none of
the main menu commands function, however, a collilter window provides an indication of the
simulation progress and the simulation can be stopped at any time as with the trim stage. In
addition, if the Verbose Output flag has been checked in the program preferences, the
integration routine will output the time, the absolute helicopter velocity, the relative load
velocity and an estimate of the integration error in the MATLAB® command window.

Typically, the system is too complex to rllil in real-time and therefore, simulations with a
small timestep, or a high order integration algorithm will take longer to complete. However, if
the simulation has diverged due to trllilcation error, it may be necessary to increase the order,
or reduce the timestep.
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Figure 3.12: Simulation Run Display

3.5 Output Controls

The output controls are intended to be used following simulation, and include buttons to
Replay Simulation, Plot Time-Histories, and Generate VRML code. Both the simulationreplay and
VRML model provide a real-time tlrree-dimensional graphical display of the simulation,
whereas the time-history plots are intended for analysis of the output data.

3.5.1 Simulation Replay

This facihty opens the same REPLAY windows as for the simulation stages; however, this
time it is called with the full position, orientation and control data sets, rather than just the
data at any particular step in an iterative fashion. Executing the REPLAY function in this way
allows full control of the Start, Pause, and Stop conunands in the menu, as well as several
options not previously available. An example of the display is shown in Figure 3.13.
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Figure 3.13: Simulation Replay

Freqn denotes the integer display frequency for the simulation, that is, the nwnber of frames
skipped before each display step. For example, a freqn of 1 will display every frame, and a
freqn of 10 will display every 10th. The viewpoint can also be moved about 3600 in each axis
using theazim andelev sliders. If the Erasemode option is checked (the default), each frame will
be erased before rendering the next. If it is unchecked, a trail or history of frames, such as that
shown in the figure will be displayed. Note that these frames aren't pennanent objects, and
once the viewpoint changes the trail will disappear. Another option to help with the
visualisation is to display Tip Trails during the simulation replay. The Tip Trails are simply
coloured lines that follow the port and starboard extremities of the helicopter, much like long
streamers. Below the controls and options is a frame displaying the current time and timestep.
The associated slider can be moved to any point within the simulation range and the
helicopter-load model will be set to the corresponding position. The last box in the menu
window is the Realtime indicator. During replay, regardless of the display frequency, this
changes colour, depending on whether the simulation is being replayed in real time: green
indicates real time and red indicates a refresh rate slower than real time.

3.5.2 Time-History Plots

The time-history plots give a qualitative overview of the simulation nm for the helicopter and
load(s). The variables that are plotted depends on the Simulation axes defined in the simulation
configuration, as well as the control inputs and the number of loads. An example of one set of
plots is shown in Figure 3.14, for a single-load configuration.
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Figure 3.14: Time-History Plots

Here, the body-axes velocities (u, v, w) and the body-axes angular rates (p, q, r) are included,
as well as the Euler angles ( l' ,e , lfI ) and the four control inputs ( 0b' 0a' Or' 0e ).
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3.5.3 VRML Generation

The Virtual Reality Modelling Language (VRML) is an ideal language for the visualisation of
dynamic flight simulations [18]. Using the VRML Generation command, the user can export
the simulation in VRML fonnat, which can then be viewed and replayed in a VRML browser.
Figure 3.15 is a screen capture of the Internet Explorer web browser with the Cortona VRML
plug-in installed.

Figure 3.15: VRML Simulation Replay

It is important to make sure the VRlvIL Directory is set correctly in the program preferences,
that is, the directory in which all the VRML helicopter and load models reside. Otherwise,
they will not appear in the VRML simulation.

To nm the simulation rep lay, the user simply clicks on either the helicopter or load. It is not
possible to pause or stop the simulation midway through the run, and to go back to the first
frame without restarting, the user must reload the model (using the browser's reload
command).

There are several viewpoints to choose from, including User, Side, Front, Top, and Behind.
These are all static, in the sense that their inertial position, relative to the helicopter, is fixed
throughout the simulation, whilst the view angle remains constant. The dynamic viewpoints
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include Fixed-Inertial, Fixed-200m-Pan, Fixed-Aircraft and Fixed-Down. Unlike the first set, the
view angle for these changes dUring the simulation. The Fixed-Inertial viewpoint represents
one whose position is fixed in space, such as an observer on the ground. Fixed-200m-Pan is the
same, except the focal length changes with time such that the helicopter-load configuration
occupies the full view tlrroughout. The Fixed-Aircraft and Fixed-Down viewpoints have fixed
offsets from the helicopter, which remain constant and their view angles change with any
variation in the helicopter angle. The fonner is located at a position and angle similar to the
User viewpoint, while the latter is located just below the middle helicopter attaclunentpoint,
looking down at the load. As well as the listed viewpoints, it is possible to navigate the
viewpoint to any position and angle in space using the VRML browser's controls. When doing
so, it is important to remember that the variation of the viewpoint position and/or angle is not
altered, just the offset. So, for example, changing the initial position of the User viewpoint will
follow the helicopter as expected, but changing the initial position of the Fixed-Inertial
viewpoint may result in a strange replay that does not follow the helicopter at all.

In addition to the helicopter, load and cables, aload displacement patch is superimposed on
the VRML model to aid with visualisation of the load's swinging motion. This patch extends
from the helicopter attaclunent point to the load centre-of-gravity and indicates the amount of
relative displacement seen by the load from its trim position.

3.6 Example: 3000 L Water Tank

An example is given here for the CH-47D and a 3000 L water tank, suspended by four slings,
as shown in Figure 3.16. This is a simple load and can be adequately represented by a box­
shaped container. The centre of gravity is assumed to remain at the centre of the tank at all
times.

Figure 3.16: 3000 L Water Tank
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The control inputs specified include a rate-feedback on the longitudinal stick to keep the nose
level throughout the manoeuvre, as well as a doublet on the lateral stick and a pulse on the
pedals to excite the load. For this case, they are not intended to accurately represent any real­
world inputs that might typically be employed, but specifically designed to excite the load
under the helicopter.

Below is a list of the steps to configure, trim and simulate the helicopter load system. They
represent just one approach, especially for trim, that can be used to achieve the same outcome.
For example, another scheme to obtain trim would be to first balance the inelastic
configuration, then trim the inelastic configuration, and then trim the elastic configuration.

The steps are as follows:

1. Start the program, by typing at the command prompt:

» ghslsim

2. First, check the program preferences. Select File --> Preferences... from the main menu.
Confirm that the Web browser, VRML Directory and GZIP Executable fields are correct
and if not, update them accordingly. Check all of the checkboxes for a detailed output
and visualisation.

3. Next, in the main interface, set the following fields:

Simulation time (s)
Integration timestep (s)
Number of steps
Trim airspeed (ftls): Forward
Trim altitude (It)

Simulation axes
Angular representation
Simulation type
Sling model
Trim routine
Simulation routine

10
0.1
101
100
100

@ combined
@ Euler
@ nonlinear
@ inelastic
@ Isqnonlin
@ ode45

@ CH-47
@ MEX

This will create a 10 second simulation with 101 timesteps. The forward speed is
approximately 60 kn and the altitude 100 ft. All options are set to their defaults, except
for the Sling model, which is set to inelastic for the balance stage.

4. Press the Configure helicoRter button. In the Helicopter Configuration window that
pops up, type in the following options:

Helicopter type
Simulation model

For this run, leave the Stability & Control Augmentation System (SG\S) checkbox
unchecked.

Weight (Ib)
Inertia (slug.ftA2) Ixx; Iyy; Izz

46000
43200; 250000; 234000

Press the a button to return to the main interface. These are the figures for a fully
loaded Chinook CH-47D, with the SCAS switched off.
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5. Press the Configure loads button. In the Helicopter Configuration window that pops up,
type in the following options and fields:

Load type
Load weight (Ib)
Load inertia (slug.ftA2) Ixx; Iyy; Izz
Size (Il) Length; Width; Height
Sling configuration
Cable length (Il)
Stiffness (Ibr/ll)
Damping (Ibr/ft/s)
Attachments (Il): x-offset; y-offset; z-offset

Leave the Cables slack (zero force) under contraction checkbox unchecked. This represents
an empty 3000 L water tank, supported by four slings attached to each upper corner of
the load. Since there is only one load with a multiple-point configuration, the slings
will automatically be located to the helicopter middle cargo hook. At this stage, there
is no attempt to implement the correct centre-of-gravity position, and consequently, it
is placed at the centre of the load. Press the a button to return to the main interface
again.

6. Press the Configure controls button. In the Controls Configuration window that appears,
make sure the Longitudinal stick tab is active and type in the following options:

Input type @ rate-feedback
Start time (s) 0
Hold time (s) 10
Rate gain 40

Now press the Add to Control button to add the specified input to the longitudinal
control. The entire control graph should fill with grey, indicating the region of control
feedback. Next, press the Lateral stick tab to activate that control and type in the
following:

Input type @ doublet
Start time (s) 1
Ramp time (s) 0.5
Hold time (s) 1
Magnitude (in) 0.2

Press the Add to Control button to add the specified input to the lateral control. A
doublet input with those properties will be drawn to the control graph. Then within
the same frame (Lateral stick), type in the following:

Input type
Start time (s)
Ramp time (s)
Hold time (s)
Magnitude (in)

@ pulse
4.5
0.5
0.5
-D.2
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Agaill, press the Add to Control button to superimpose the speci£iedinput to the lateral
control. Adding this pulse effectively lengthens the second, negative component of the
doublet-type control sequence. Next, press the Pedals tab to activate that control and
type in the following:

Input type @ pulse
Start time (s) 1
Ramp time (s) 0.5
Hold time (s) 2
Magnitude (in) 0 1

Press the dd to Control button to add the specified input to the pedal controls. A pulse
input will be drawn to the graph. Next, press the Colledive stick tab to activate that
control and type in the following:

Input type @ none

Press the Add to Control button to add the null input to the collective controls. Lastly,
press the 0 button to return to the maill interface.

7. Press the Initial Conditions button. In the Trim Initialisation window that appears, type
in the following options:

Initial Attitude (deg) bank; pitch; azimuth 0; 5; 0
Initial Controls (in) Longitudinal; Lateral; 0; 0

Pedals; Collective 0; 4.56

The helicopter should have a slight, positive pitch angle at trim, hence the initial guess
of 50. Each of the controls is typically set to its central (range-average) positions. For
the Collective stick, which ranges from 0" to 9.12" for the CH-47D, this is 4.56", and
for the rest it is zero. When finished, press the 0 button to return to the maill
interface.

8. Save the simulation configuration data via themaillmenu:File--> Save As. It is highly
recommended that the user saves at this point, in order to avoid having to re-enter all
of the above data should anything go wrong! This will save all the configuration data
and the initial trim state guess. Now, if the configuration needs to be altered, or any
subsequent balance, trim or simulation re-run, it is simply a matter of loading the
saved file via the same menu IFile --> ORen), and resuming from there.

9. First step of the simulation stage: Balance the loads by pressing the BALANCE LOADS
button. This first simple inelastic configuration should balance within a few iterations.
The load should have a pitch angle of approximately _50, that is, swung aft by 50 due
to the bluff-body drag in effect at 100 ftl s.

10. Now that a better idea of the initial state has been determined, one can proceed to the
elastic configuration with confidence. Set the Slin? model to elastic with the radio
button on the maill interface and balance agaill IBALANCE LOADS . The cables will
stretch slightly to counteract the force exerted by the load weight and drag.
Consequently, the load position and angle will change, but not by much. The pitch
angle, for example, will still be approximately _50.
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11. Proceed dITectly to trim, without making any further alterations to the configuration.
Press the lrR IMbutton. This time, the helicopter's attitude and controls will change, as
well as the load's position and angle. Since the algorithm is now optimising the full 12
degrees-of-freedom, it will take slightly longer to converge. For this configuration, the
nonlinear least squares trim routine will take around 50 iterations before the tolerance
criterion is met. The resulting trim values displayed for the helicopter are:

Table 3.2: Helicopter Trim State with 3000 L Water Tank Load

phi theta psi deLb deLa deLr deLe

-0.10 2.95 0.00 1.00 0.06 0.16 5.37

Save the configuration data via the main menu as before. If the same file is chosen (or
saved dITectly, using File --> Save, this will update the Trim Initialisation variables to
their new values. Saving at this point can be considered optional, although it is
recommended ifmultiple simulation runs are to be executed from the same trim state.
For example, if the user is interested in testing the effect of different control inputs on
the same configuration.

12. Run the simulation with the RU button. For the 101 time steps, this takes around 30
seconds on an Intel Pentium-41.9 GHz processor machine. If the ReplayWindow option
was checked, the user will see the helicopter and load being simulated as the
integration routine progresses. When the simulation has completed, a new Replay
window will appear with the full simulation ready for replay.

13. Save the simulation configuration and output data via the main menu: Ellil--> Save As.
Once again, it is highly recommended that the user saves at this point.

14. If the Replay VVindow option was not checked, or the ReI'lay window was closed, it is
still possible to replay the simulation using the eplay Simulatio button under the
Output controls. Close the windows using the button on the Replay menu when
finished.

15. Plot the time-histories using the Plot Time-Histories button.

16. Generate VRML model and replay with the Generate VRMl.! button. The resulting
VRML file will be automatically saved to the VRML Diredory specified in the
preferences. Exit the program.

The configuration can now be re-trimmed, or the simulation re-run from the files saved
earlier. It is also possible to replay the simulation again, or plot the time-histories from any
complete run that was saved.
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3.7 Advanced Topics

The Graphical User Interface (GUI) is sufficient for most purposes, and provides a convenient
tool for slung load simulation and analysis that requires very little knowledge of the
underlying system. Indeed, the GUI is just a higher-level simphtied interface to the full
HSLSIM package. Many options are hidden and various assumptions are made regarding the
configuration details within the program. However, it is possible to access the lower-level
scripts and ftmctions of the package, and once the user has gained some experience in using it,
they may wish to write their own scripts, or tailor the code to meet their requirements.

3.7.1 Automation & Multiple Simulation Runs

The following section details an example for the automated execution of a suite of simulation
runs. In this example, the configuration from the previous section is used, that is, a CH-47D
helicopter and 3000 L water tank suspended by four slings. The aim of the experiment is to
assess the effect of airspeed and load weight on the stability of the load during lateral doublet
manoeuvres. To this end, the maximum load deviation will be recorded for a suite of
simulation runs over a range of trim airspeeds and load masses. Refer to Appendix A.2.1 for a
full listing of the code, ch47b3kltsim. m.

Variables that can be safely modified by the user are all defined at the top of the file in the
configuration section. These include ILtitle, B...mdir, ILV, B...m, ILT, prefs, config and
wr1fi 1es. The variables ILti t 1e and ILmdi r specify the filename prefix and directory used
when the data from each run is saved to disk. His not compulsory to incorporate the title into
the directory name, but has been done for clearer organisation. The three vectors, B...m, ILV,
and ILT detail the flight-points in terms ofload mass, airspeed, and control-input magnitude,
respectively, at which the configuration is to be trimmed and simulated. 1Lm, consists of 10
points spaced uniformly between 3330 lb and 99431b, ILV consists of 6 points between 60 kt
and 120 kt, and ILT consists of just three points at 0.0,1.0 and 2.0. Consequently, several of the
resulting special variables employed to store results, such as the maximum load deviation
ILdA, will have three dimensions and be of size ILmN x lLYN x ILTN, corresponding to the
length of each vector (10 x 6 x 3). The Prefs struct contains general program preferences, as
specified from within the GUL These include the VRML Directory, the location of the GZIP
Executable if present, and several display flags. The Web Browser field is not used here, since
the browser is not launched automatically at any stage. The confi g struct contains data for
the simulation, helicopter, load, controls and trim initialisation. Most of these fields should be
self-explanatory, with a few exceptions. Firstly, note that the horizontal trim velocity is
initially equal to ILV(l) in ft/s, hence the conversion factor. The load weight is equal to
1Lm(1), and the load inertia (in x, y, and z) is approximated by a simple linear ftmction of
1Lm(1). Likewise, the magnitude of the lateral stick and pedal inputs (2nd and 3rd elements
of ctrl data) are ftmctions of ILT(l). These are all updated during each iteration of the main
loop. Note also that the number and order of the loaddata attachment offsets are important
and specific to the type of sling configuration used. For a single attachment, there is only one
set of (x, y, z) locations. For a bifilar configuration, there are two, ordered from the forward
attachment to the aft. For both multiple and tandem configurations, there are four, ordered:
forward-starboard, aft- starboard, aft-port, and then forward-port (i.e., clockwise ordering).
Both the helicopter and load inertias are represented by the traditional 3 x 3 matrices [19].
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Lastly, pay careful attention to the braces used for each field - some are matrices or scalars
(with square brackets), and some are cells (with curly brackets). The 2nd and3rd elements of
wrl fi 1es define the location of the hehcopter and load models to be referenced in the output
VRML file. The 1st element is left empty in this section, but is filled later with an automatically
generated filename.

Other variables that are created include the main index matrix BJ, which specifies the order
of the trim-simulation runs. Since the initial trim state guess for each iteration is based on the
previous trim state determined (through optimisation), this order is arranged to minimise the
difference between consecutive trim points. Hence, the main loop first ascends through the
load mass sequence at the minimum velocity, then descends through the load mass sequence
at the next highest velocity, then ascends through the load mass sequence again for the next
highest velocity and so on. This zig-zag path over the mass-velocity space is just one scheme
that can be employed to cover the range of fhght-points. The main aim of any such scheme is
to start from the best possible guess of trim at each fhght-point and therefore minimise the
occurrence of unconverged cases and/or errors. The matrix ILdA holds the maximum load
deviation for each flight-point. IL- holds a flag for each flight-point, where a value of 0
indicates that the configuration is untrimmed, 1 indicates that it is trimmed and 2 indicates
that it has been (trimmed and) simulated. The matrix B_UO holds the trim configuration
velocities, B_rO holds the trim positions and orientations, B....xt holds the trim states and ILdO
holds the trim controls for each flight-point.

The main functions, hs1trimand hs1simactually use a set of different variables, as opposed
to confi g and Prefs, in which the options and configuration details are kept. These are the
global variables HOAT-' LOAT-' COAT-' opt-- and pref_ . The first three hold the equivalent
helicopter, load and cable data and the next two hold the program options and preferences.
For more detail, see the script ghs_init, which converts the datainConfig and Prefs to the
global variables used.

Upon execution, the matrix B_is checked to see if the script has been run before and ifnot, it
creates all of the above variables and proceeds to the main loop. If it has, this first step is
skipped, as well as any flight points encountered during each cycle of the loop that have been
successfully trimmed and simulated. If any particular flight-pOint has been trimmed, but not
simulated, the remaining simulation cases will be run from the corresponding trim state. In
other words, the program attempts to trim at each fhght point, and then, if successful, runs
each of the simulation cases for that point. For each fhght-point following the first, the trim
state used to initiahse the trim optimisation is that determined from the previous flight-point.
If the system cannot be trimmed to within tolerance at any particular flight-point, the trim
state used is that from two iterations ago. If the system still cannot be trimmed, the trim state
from three iterations ago is used, and so on until the hst of all previous states has been
exhausted. This effectively reduces the likelihood of the optimisation being unable to
converge because of a poor initial trim state guess.
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At every step of the main loop, the load mass and inertia, and the trim velocity are changed to
their appropriate values as given by ILIII and ILV. As mentioned above, the inertia is
approximated by a simple linear function of ILIII. The vertical location of the water tank's
centre-of-gravity is also approximated using a simple function based on the water level for
any given weightmj. Since the water level is 2.0in below centre for both empty (m1 = 3330Ib)
and full (mN = 99431b), and the height of the tank is 46.0 in, the cg offset can be expressed:

(3)

After setting the load mass and inertia, and the trim velocity for the current flight-point, the
balance/ trim stage is commenced. This is done in three steps: First, balance the inelastic load
configuration; then balance the elastic load configuration; and lastly, trim the entire
helicopter-load system. For each balance step, the following commands are executed:

1. Sling model is set to elastic or inelastic

2. Global variables are initialised with ghs_init

3. Load vertical cg position is calculated and used in the geometric sub-struct LDAT_o S

4. Initial load position is set directly beneath the fixed helicopter

5. Replay window is created if flagged in the program preferences

6. Load is balanced beneath the fixed helicopter via hslload

7. Load positional trim data is updated

The trim step is much simpler, entailing the following commands:

1. Global variables are initialised with ghs_init

2. Replay window is created if flagged

3. Trim time-control matrix TDO is set to its initial value

4. Helicopter load system is trimmed via hsltrim

5. Trim control vector dO is updated

The sum of squares of the residual external force is then checked against a tolerance (0.1 in
this example), and ifunsuccessful, the trim index is decremented, the corresponding element
of IL- is set to 0 and program control returns to the top of the loop for another attempt at trim
starting at the previous flight-pOint trim state. If the check is successful, the matrices ILUO,
B_rO, ILdO and B....xt are updated, the corresponding element of B_ is set to 1 and program
control continues on to the simulation stage.

Upon entering the simulation stage, the matrix B_ is examined to find which simulations
corresponding to the range of control input magnitudes, have yet to be run. Then, another
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loop is started in which those simulations are completed. In this stage, the following
commands are executed:

1. Global variables are initialised with ghs_init

2. Replay window is created if flagged in the program preferences

3. Trim time-control matrix TOO is set to it's initial value

4. Configuration velocity vector U, the position & orientation vector r and the full state
vector X are set to their initial values

5. Time-control input matrix TO is generated for the specified time sequence and offset
according to its trim value

6. Simulation is run via hslsim

7. Data struct is created with the simulation output, including time t, state X, controls C,

modified controls cc, body-axes velocities Va, body-axes accelerations vadot, cable
angles Aej,load deviation Ajj, and cable force Fe

8. Save the confi 9 and Data structs to file

9. Update the maximum load deviation matrix B.-dA

The last step of the simulation stage involves creating the VRML file from the simulation data
output. In order to accomplish this, first, the load's vertical cg location must be reset back to
centre, and the load position time-history needs to be adjusted accordingly (in effect,
removing the offset, Zcg). Then, the user and fixed-inertial viewpoint offsets are defined and
the VRML file generated via the function hsl vrml. If the executable GZIP exists, the file is
compressed from its native ASCII formatto binary. Lastly, the corresponding element in the
special matrix B_ is set to 2 to indicate a successfully simulated flight-pOint and both loops
(balance/ trim and simulation) are closed. The progress and/or total execution time is
displayed and all variables used in the script are saved to file. These include all of the special
variables B_* used in the script to store data from each flight-point.

If for any flight-pOint, the program has too much difficulty in attaining trim (and the user is
certain that trim is possible for that particular configuration and flight-point), a different
approach may be necessary. One method is to vary the initial guess of the h'im state variables,
rO and dO to try and eliminate any optimisation problems with local minima. This can be
done, either from within the GUI, or by executing commands from the workplace itself. In the
latter case, should trim be attained, it is imperative that the special matrix B_ be updated to
indicate a successfully trimmed flight-point. Another alternative is to modify trim procedure
of the main script to account for difficult cases or evenjust that particular flight-point. Perhaps
the simplest solution however, is to extend the time frame by some period preceding the
commanded manoeuvre in which the helicopter and load are stabilised using rate-feedback.
This was implemented for the trim and simulation of the CH-47D and Merlo Rough Terrain
Forklift, in the script eh47bmrtfsi m. m. The simulation time was increased to 15 seconds, the
first 5 seconds of which, the helicopter was controlled by rate-feedback on the stick and
pedals. Consequently, the helicopter is still able to stabilise from an initial state that is not
adequately trimmed at several flight-points.
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There are various ways in which the data from a siumlatiun experiment canbe analysed. The
script hslllap is one example, whidl plots colour contour maps of the maximum load
deviation stored in the matrix B_dA. The script can be run immediately after a set of
h'im/simulation runs, 01' after loading the final file (above) containing all relevant variables
from such an experiment. hsllllap reates one plot per control-input maenitude specified in
the vecLor B_T as shown.in Figure 3.17, Figure 3.18, and Figure 3.19. Each plots illustrates the
varialion of maximum load deviation wilh, in this example, loadmass and airspeed. Contour
lil1es are also added to the plots for more darity. For th~ CH-47D helicopter and 3000 T. Water
Tank load, it can be seen that the maximum load deviation generally deo'eases with
increasing airspeed and load mass, and increases with an increase in the cuntrol input
magnilude. There do not appear to be any anomalies.in the contoLll'S.

3000L Water Tank Load (3330-9943Ib) : Double! Input =0.0 in
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figure 3.17: Max Load Deviation Contour Plot: CH-47D + 3000 LWater Tank, Lateral Doublet
Input Magnitude =0.0 in

32



DSTO-TN-0855

3000L Water Tank Load (3330-9943Ib) : Doublet Input" 1.0 in
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Figure 3,18: Max Load Deviation Cantaur Plot: CH-47D + 3000 L Water Tank, Lateral Doublet
Input Magnitude = 1,0 in
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Figure 3.19: Max Load Deviation Contour Plot: CH-47D + 3000 L Water Tank, Lateral Doublet
input Magnitude =2.U in.
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Another script, hsl rng perfonns essentially the same operation, but presents the data in a
different way, as shown in Figure 3.20. With this script, the maximum load deviation
magnitude is plot against airspeed using lines of constant load mass. There is one group of
lines for each control input, all drawn on the same graph.

3000L Water TaM Load (3330-99431b)
"",----~----'-:;..:.:-==:.;===e;:::---~--___,

I
Max load

Do""
(dell) 30

Doubillt Input .. 0.0 In

w "Airspeed (kt) "'" '" '"
Figure 3.20: Max wad Deviation Range Plot: CH-47D + 3000L Water Tank

Both hslmap and hsl rng will work for most simulation experiments. However, they may
need to be edited if different data is to be examined, or the resulting data is not presented in
the marmer desired. For example, if the lateral cg position is specified as an independent
variable in the suite of flight-points, or if the user wishes to fit a polynomial curve to the data
prior to display.

Of course, these files are just scripts that load the configuration and output data for each
flight-point and then compile the relevant infonnation into matrices which are subsequently
displayed in various fonnats. For each experiment, the files that are saved include: one
containing the initial configuration infonnation; one containing the configuration infonnation
and output data for each flight-point simulated (totallingB~ ,~ B_VN ,~ B_TN); and one with
all of the special and extraneous variables used. In the example above, these are:
ch47b3kltsim-config.mat, ch47b3kltsim-V060M333DOO.mat ch47b3kltsim­
v120M994D20.mat and ch47b3kltsim. mat.

The first file contains the confi g struct, the second through to the second last contains both
config and Data structs and the last contains all variables resident following last iteration of
the main loop. Therefore, in order to access the data from any particular flight-point, the user
needs simply to load the file via the conunand:

» load ch47b3kltsim-V090M627D20
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which brings the confi 9 and Data structs into the workspace. AF, detailed below (Appendix
A2.1), Data contains fields time, state, control, modcontrol, bodyvel, bodyaec,
cab1eangl e, 1oaddevi ati on, and cab1efo rce. So, to plot the cable force variation against
time, issue the command:

» plo~cpa~a.~ime,Da~a.cableforce)

AF, another example, the script ghsl_c~rl generates the time-control input matrix, TO for a
control sequence specified in confi g, so, to plot the control inputs against time, issue the
commands:

» N = config.simdata.numsteps; t = Data.time; ghsl_ctrl
» for j = 1:4, subplot(2,2,j), plot(t,TD(:,j+1,1», end

Lastly, it is very easy to create a script similar to hs1map and hs1rng that cycle through the
flight-points, load the data from each one, and compile specific values into a large matrix for
display. The following commands do just that, for the cable roll Oateral sWing) angle over a
range of airspeeds.

»B_title = 'ch47b3kltsim'; B-mdir = [pwd, '\HSL\',B_title, '\'];
» load([B-mdir,B_title]), B-dP = zeros(N,B_VN);
» for B_j = l:B_VN
» B_i = 1; B-k = 3;
» B-mfile = sprin~f([B_title, '-V%03d~3dD~2d'],

» round (B_V(B_j»,round(8-m(B_i)/lO) ,round(B_T(B-k)*lO»;
» fprintf([B-mfile, '\n']), load([B-mdir,B-mfile])
» BJlp(: ,B-i) = Data.eableangle(:, 1);
» end
» surf(B_V,t,B_dp*180/pi); view([62.5,30])
» xlabel('Airspeed (kt)'), vlabel('Time (s)')
» title('cable roll angle (deg)')

The result from this sCript is shown in Figure 3.21.

Cuble rol angle {cleg}

80
90

Tlme(s)

l'

Figure 3.21: Cable Roll Angle: CH-47D + 3000 L Water Tank, Load Mass = 3330 lb; Lateral
Doublet Input Magnitude = 2.0 in
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Full details of the data matrices are outlined in [20]. For a single-cable configuration, the
system state matrix:

x = [U R]

where the configuration velocity and position matrices:

(4)

U=[4 A: 4
R = [XI YI ZI

(5)

and [4 ftf 4] represent the hehcopter inertial velocities, [~ J% ~] represent the load

inertial velocities, [X&lcl y&lcl Z&lcl] are the cable velocities in cable axes, [¢I 6\ If/I]
are the hehcopter Euler angles, and [¢2 8 2 If/2] are the load Euler angles. For other

configurations, the velocities used in place of the cable velocities are different, but still relative
to the helicopter.

The control matrix:

(6)

where Db denotes the longitudinal stick control, Da denotes the lateral stick, Dr denotes the

pedals and Dc denotes the collective stick. Also, the augmented control matrix CC has the

same control inputs, modified by any control-feedback commands present.

The body velocity matrix:

(7)

and the body acceleration matrix ~is just the differential of Va.

The cable angle matrix:

(8)

comprises the roll, pitch and yaw angles of the first cable (forward-starboard) supporting the
load. The load deviation vector A jj , represents the absolute angle made by a line from the

hehcopter cg to the load cg from its trim orientation.

Lastly, the cable force, FC is a vector of the non-dimensional tensile force within the cable.

All of the data matrices and vectors will normally have the length specified in the simulation
configuration. Note, however, that if the simulation has diverged, or run into error, or
stopped prematurely, the length of these will be less.
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3.7.2 Extending the Model

Aside from writing scripts to nm multiple simulations or access the results for display, the
user may wish to alter the model itself. Common tasks might involve changing the load's
centre-of-gravity location, or adjusting the limits imposed during trim. Some of these aspects
will now be discussed.

In order to alter the G-1)th load's cg position, the only variables that need to be changed are
those in the struct LOAT_(j) . s, which holds all the geometric data for the load. Spedfically,
these are: lDAT_(j) . S. Links. Oata and LOAT_(j) . S. Patches. Oata - both 3-column
matrices with (x, y, z) data for the links (load attachments) and the patches (load surface); their
length is unimportant. The positions of the links and patches are both relative to the load's
centre-of-gravity, so the cg can be effectively moved by displacing the links and patches by
some amount. For example, in the script for the trim and simulation of the CH-47D and
ANTPQ-36 Radar, ch47bantpqsi m. m, the cg is offset horizontally by an incremental amount,
BJ with the commands:

LOAT_(2).S.links.Oata(:,1) = B-links - B-x(B_i);

LOAT_(2).S.Patches.Data(:,1) = &-patches - B-x(B-i);

Note that the links and patches must be reset, and the load position adjusted to account for the
offset, before generating a VRML model, since this function assumes that the cg is at the load's
centre. It is also possible to change the location of load's attachment points in this way.

To rearrange the helicopter-load attachment locations, the cable index matrix for the
G-1)th load COAT_(j) . i must be edited. This is a 2-row matrix with each column representing
a different cable in the configuration. The top row lists the helicopter attachment indices and
the bottom row lists the load attachment indices. The attachment points are ordered aftward
from the forward-mostlocation, or in a clockwise direction (looking down) from the forward
starboard location, as detailed in Section 3.3.2. Typically,

COAT_(j).i = [ cLhelLfwcLtoJft ; ci_loacLcw_froLfwdstbd ];

Thus, for a four-cable configuration, the attachment points will be ordered: forward-starboard,
aft-starboard, aft-port, forward-port. If those cables are attached in a tandem configuration to
the forward and aft attachment points on a helicopter with three hooks, the matrix will be
equal to [1, 3, 3,1; 1, 2 , 3 ,4]. If the aft two cables are brought forward to the middle
helicopter hook, the matrix will become [1,2,2, 1; 1,2,3,4] . A bifilar configuration will
normally use the same helicopter hooks (forward and aft) as a tandem configuration, so the
matrix would be numbered: [1,3; 1,2]. Bringing the aft cable forward would change this to
[1,2; 1, 2] . If a second, multiple-point load were placed on the third hook, it would have
indices equal to [3, 3 , 3 , 3 ;1, 2 , 3 , 4] .

Of course, the properties of individual cables can also be modified by directly editing any of
the fields within the cable data matrix, COAT_. The stiffness and damping of the cables are held
in vectors COAT_(j) . Kand COAT_(j) .C, respectively. The unstretched and current lengths are
in COAT_(j) .10 and COAT_(j) .1, respectively. However, care must be taken if adjusting
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these individually, because for tandem configurations, the forward two slings and aft two
sling must have the same lengths. For multiple-point configurations, all four slings must have
the same length; otherwise the load cannot be set to its initial position, before balancing. The
cable stretch rates CDAT_(j) . 1dot and the cable direction vectors CDAT_(j) .ILN, should not
be altered.

The various fields within the helicopter and load data matrices HDAT_ and LDAT_ can also be
changed directly, but would be wiser to edit the m-files that create them. For the helicopter,
these files are hs1_ch47bdat. m, hsl_ch53ddat . m, and hs1JJh1hdat. m. The fields include the
linearised aerodynamic coefficients HDAT_.A, helicopter reference area HDAT_. R, reference
length HDAT_. L, as well as the mass HDAT_.m, inertia HDAT_. J, control limits HDAT_.C, and
geometric structure HDAT_.S. For the loads, there is hsl_a1rfo11dat.m, hs1_boxdat.m,
hsl_cy11nderdat.m, hs1-m11vandat.m, hsl-p1atedat.m, hsl_r1bdat.m, and
hs'_sboxdat. m. The fields created in each include the aerodynamic coefficients LDAT_ (j) .A,

mass LDAT_(j) . m, inertia LDAT_(j) . J, geometric structure LDAT_(j) . S. The only field that
should not be altered is the load angle vector LDAT_(j) . a.

One useful experiment involves constraining the helicopter-load model in certain axes during
both trim and simulation. This can be achieved with the use of infinite mass and inertial
elements in the helicopter and load data matrices. For example, the helicopter and load can be
constrained to the x-z plane by setting: m(2) = Inf,
J (1,1) = Inf, and J (3,3) = Inf for both HDAT_ and LDAT_(j). Further, the helicopter can
be constrained to move only along the x-axis by also setting: HDAT_.m(3) = Inf and
HDAT_. J (2.2) = Inf. The matrix that is actually used in the functions is the combined
helicopter-load mass-inertia matrix D, which is created in ghs1_1ni t by concatenating each of
the sub matrices along the main diagonal.

Finally, it may become necessary to increase the limits imposed during trim if the true angles
associated with the helicopter and load orientation are large. These are set in hs'_t r1 mfun. m
and depend on the sling configuration and the airspeed at trim. The matrix dl i mcontains the
upper and lower limits for the helicopter roll and pitch angles and the control inputs. Those
control limits actually come from the helicopter data matrix HDAT_.C, and are created in the
m-files above. The matrix r1i mdefines the upper and lower limits for each load's roll, pitch
and yaw angles in an elastic configuration, while a11mdefines the limits for other load angles
(that vary according to the sling configuration) used in an inelastic model. Around hover «
10ft/s), the absolute limits generally range from 5° to 20°, and above that, they range from 10°
to 60°. It is possible to see the optimisation routine hitting these limits in the REPLAY display
during trim - the helicopter, loads or controls will turn red. The controls are hard-limited, so
if the limits are met, they will not be exceeded. All of the angles, on the other hand, have only
soft limits that may be exceeded. However, any variable that has reached or passed its limit
will substantially penalise the target function, which for trim is the residual (out-of-balance)
external force. As a result, the optimisation routine should stay within the limits specified.
While it is possible to maintain realistic limits for the helicopter and load angles, it can be
much harder to stay within the control limits of the helicopter. If the controls are hitting their
limits for a range of different fhght-points, it is likely that the helicopter-load system is outside
its envelope and will not be able to achieve trim.
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4. Conclusion

A system description has been provided for the helicopter slung load simulation software
package HSLSIM, followed by a detailed User's Guide. Examples are provided throughout for
a CH-47D helicopter carrying a 3000 L water tank and responding to a lateral doublet control
input. A description of the simulation procedure is detailed for both GUI and script-driven
execution. The model should provide Army personnel with an insight into dynamic stability
of slung loads before fhght testing thereby providing improved safety and reduced fhght
testing time.
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Appendix A: MATLAB® Toolbox

A.l. Package Contents

A.l.l MATLAB® M-files, MEX-files and MAT-files

a2q.m
alt2sig.m
ch47b3kltsim.m
ch47bantpqsim.m
ch47bmrtfsim.m
ch47btclsim.m
count.m
dtime.m
e2q.m
e2v.m
erates.m
eratesi.m
euler.m
eulers.m
ghsl_about.m
ghsl_ctrl.m
ghsl_ctrlcfg.m
ghslJ,elicfg.m
ghsl_init.m
ghsl_loadcfg.m
ghsL,plot.m
ghsL,prefs.m
ghsl_triminit.m
ghslsim.m
hsl_airfoildat.m
hslJJifilar.m
hslJJoxdat.m
hsl_ch47bdat.m
hsl_ch53ddat.m
hsl_checkopts.m
hsl_coeffs.m
hsl_config.m
hsl_cylinderdat.m
hsl_forces.m
hsl_indices.m
hsl_loadforces.m
hsl_loadfun.m
hslJlilvandat.m
hsl_output.m

Angular displacement conversion; Angular---+Quaternion representation
Altitude to density-ratio conversion
Simulation script for CH-47D + 3000L Water-tank system
Simulation script for CH-47D + ANTPQ-36 Radar system
Simulation script for CH-47D + Merlo Rough Terrain Forklift system
Simulation script for CH-47D + Trailer Cargo Lightweight system
Graphical progress count & time indicator
Time string formatted in years, months, days, hours, mins & secs
Angular displacement conversion; Euler->Quaternion representation
Angular displacement conversion; Euler->VRML rotation representation
Euler transform matrix for angular velocities
Inverse Euler transform matrix for angular velocities
Transformation matrix for an Euler-angle triplet
Transformation matrix for an Euler-angle rotation sequence
GHSLSIM function to create 'About... ' dialog window
GHSLSIM function to generate control inputs from config data
GHSLSIM function to create control input scheme
GHSLSIM function to configure helicopter
GHSLSIM function to initialise trim!simulation with config data
GHSLSIM function to configure load(s)
GHSLSIM function to plot output from simulation
GHSLSIM function to set program preferences
GHSLSIM function to set initial trim state
Graphical interface to the Helicopter Slung-load Simulation program
Airfoil (wing) aerodynamiC, mass, inertial and geometric data
Determine load position for bifilar sling configuration
Box container aerodynamic, mass, inertial and geometric data
CH-47B aircraft aerodynamic, mass, inertial and geometric data
CH-53D aircraft aerodynamic, mass, inertial and geometric data
Check input parameters for HSLSIM
Create the aerodynamic state-space matrices
Create the configuration matrices and the basis matrix for solution
Cylindrical container aerodynamic, mass, inertial and geometric data
Compute the accelerations for a helicopter slung-load system
Generate subsystem state vector indices for one body
Compute the aerodynamic force for one load
Minimisation function calculates load position & orientation for balance
MILVAN container aerodynamiC, mass, inertial and geometric data
Output display function for HSL_FORCES
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hsLplatedat.m
hsl_ribdat.m
hsl_sboxdat.m
hsl_setload.m

hsl_trimfun.m

hsl_uhlhdat.m
hslload.m
hslmap.m
hslplot.m
hslrng.m
hslsim.m
hsltrim.m
hslvrml.m
j2e.m
jacobian.m
k2e.m
labelfix.m
legendtrans.m
linspace2.m
odef.m

pendfreq.m
q2e.m
q2v.m
qratesi.m
quaternion.m
replay.m
setportrait.m
skew3.m
subplot_.m
t2e.m
v2a.m
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Flat plate aerodynamic, mass, inertial and geometric data
Rigid Inflatable Boat aerodynamic, mass, inertial and geometric data
Small box Container aerodynamic, mass, inertial and geometric data
Calculate the load position from the helicopter position and orientation as well
as various load and cable angles
Minimisation function to calculate helicopter andload position and orientation
for trim
UH-IH aircraft aerodynamic, mass, inertial and geometric data
Determine the load position through optimisation
Colour map graphs of max load deviation from multiple HSLSIM runs
Time-history plots of states and controls from simulation
Line plots of maximum load deviation from multiple HSLSIM runs
Hehcopter Slung-Load Simulation
Determine the hehcopter and load trim state through optimisation
Generate dynamic VRML model for replay of HSLSIM simulation
Convert j-unit vectors to wing-oriented Euler angles used in HSLVRML
Numerically compute the Jacobian dF/ dY of function F(T,Y)
Convert k-Ul-ut vectors to cable-oriented Euler angles
Fix rotation and alignment settings for y-Iabels on axes
Place transposed legend on current window
Linearly spaced matrix.
Differential equation solver based on Runge-Kutta integration with fixed step­
size
Estimate slung load frequencies using equivalent pendulum system
Angular displacement conversion; Quaternion -> Euler representation
Angular displacement conversion; Quaternion -> VRML rotation
Inverse quaternion transform matrix for angular velocities
Transformation matrix for a quaternion set
Display dynamic system response path
Set current paper positions for portrait orientation
General skew-symmetric matrix S(x,y,z)
Create axes in tiled positions with strict scaling
Convert transformation matrix to Euler angles
Calculate quaternion transform defined by two vectors



mexrotorgen.dll

ghsldefault.mat
ghsldemo_*.mat
ghsldemo_3klt.mat
ghsldemo_3klt-trim.mat
ghsldemo_3klt-run.mat
ghsldemo-hifilar.mat
ghsldemo-multiload.mat
ghsldemo-multiple.mat
ghsldemo-ooload.mat
ghsldemo_single.mat
ghsldemo_single-trim.mat
ghsldemo_single-run.mat
ghsldemo_tandem.mat
ghsl demo_tandem-trim. mat
ghsldemo_tandem-run.mat
ghslprefs.mat
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Compute aerodynamic forces using RotorGen MEX model

Default configuration file
Demonstration configuration files with the CH-47D helicopter
3000L Water-tank load; Multiple-point slings
As above with stable trim estimate
As above with simulation data
Box container; Bifilar slings
Two Box containers; Single and multiple-point slings
Box container; Multiple-point slings
No load (helicopter only)
Box container; Single-point sling
As above with stable trim estimate
As above with simulation data
Box container; Tandem slings
As above with stable trim estimate
As above with simulation data
Program preferences file

A.l.2

antpq.wrl
box.wrl
ch47b.wrl
ch47b-tex.wrl
cylinder.wrl
ground.wrl
.s.wrl
.s-tex.wrl
plate.wrl
rib.wrl
s70a9.wrl
tcl.wrl
uhlh.wrl

VRML Model Files

ANTPQ-36 Radar load
Generic rectangular load
CH-47B Chinook Helicopter with two main rotors
As above with image-based texture mapping
Generic cylindricalload
Ground terrain mesh with random height and texture mapping
MMS Medium Maintenance Shelter load
As above with image-based texture mapping
Generic plate load
RIB Rigid Inflatable Boat load
S70-A9 Blackhawk Helicopter with main and tail rotors
TeL Trailer Cargo Lightweight load
UH-IH Iroqois Helicopter with main and tail rotors
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0.100, .
101, .

:combi ~ed' ,
,eule~,.;.
,nonl1~e~r , .
,e1ast1 c . ' , .
1s qnon11 n , .

'ode45', ...
[B_V(1)/0.5925,0,0],
100.0,
1 ...
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A.2. Code Listing: Multiple Simulations

A.2.1 ch47b3kltsim.m

% CH47B3KLTSIM Simulation script for CH-47D + 3000L Water-tank system
%
% CH47B3KLTSIM
%
% Edit for details

% R.A. stuckey 20/01/03 (c) 2003, Defence Science and Technology organisation
% -----------------------------------------------------------------------------

% CONFIGURATION SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Check if script has been run before during the same session
if -exist('B_', 'var')

% First, the title and directory used for all saved files must be set
B_title = 'ch47b3kltsim';
B_mdir = [pwd,'\HSL\',B_title,'\'];
if -exist(B_mdir), mkdir(B_mdir); end

% As well as the range of load masses used
B_m = linspace(3330,9943,10);

% And the range of airspeeds at which the helicopter is trimmed
B_V = [60:10:120];

% Also, the control input magnitudes
B_T = [0.0,1.0,2.0];

% Next, the preferences associated with ghslsim need to be specified
prefs = struct~ ;;.

webbrowser, , ...
'vrmldir', [pwd, '\ .. \VRML\HSL\'],
'gzipexe', 'c:\program Files\winzip\gzip.exe',
'replaywin' ,1, ..
'vtrackwi n' ,1, .
'countwin',l, .
'verbose' ,1 .

) ;

% create the configuration struct, which contains all of the remaining data for
% the simulation, helicopter, load, controls and trim.

config = struct( ...
'simdata' ,struct(

'inttime'
'numsteps: ,
'simaxes'
'angrep' , '
'si mtype' ,
'sl ingmod',
'trimfun'
'simfun' '
'trimvel:
'trimalt"
'numl oads: ,

) ,
'helidata' ,struct(

:h~litype:, :ch4?',
,Sl mm~del, mex , ...
scas , 0, ...

'heliweight', 46000, ...
'heliinertia', [43200,0,0; 0, 250000,0;0,0, 234000]

) ,
'1 oaddata' , struct ( ...

'loadtype', {'box'}, .
'loadweight', {B_m(l)}, .
'loadinertia', {diag([ 0.33 1.20 1.20 ]*B_m(l))},
'loadsize', {[96.0, 77. 5,46.0]/12},
'slingcfg', {'multiple'}, .
'cablelength', {16.0 + 3.5}, .
'cablestiff', {20000.0}, .
'cabledamp', {500.0}, .
'attachoffset' ,{[1,1,-1;-1,1,-1;-1,-1,-1;1,-1,-1]*diag([96.0,77.5,46.0]/2/12)},
'cableslack', {O} ...

) ,
'ctrldata' ,struct( ...
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'inputtype' ,
, startti me' ,
, rampti me' ,
'holdtime' ,
'magni tude' ,
, rategai n' ,

{{' ratefb ' } , { ,doub 1et ' , 'pul se ' } , { ,doub1et' }, { , none' n,
{{0},{1.0,4.5},{1.0},{On, .
{{OJ, {O. 5,0. 5}, {O. 5}, {On, .
{{l0},{1.0,0.5},{1.0},{On, .
{{0},{B_T(1),-B_T(1)},{B_T(1)*0.5},{0}},
{{40},{0,0},{0},{On ...
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) ;

) ,
'trimdata' ,struct(

I rO I

'dO' :
I xtl,

[0,0,0,0,0,0,0, 5*pi/180,0,0,0,0]',
[0,0,0,4.56], .
zeros(1,12) .

save([B_mdir,B_title, '-config'], 'config')

% Lastly, specify the VRML geometric helicopter and load models to be utilised
wrlfiles = {[], [prefs.vrmldir,'ch47b.wrl'], [prefs.vrmldir,'box.wrl']};

% END CONFIGURATION SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global opt_ pref_

% Create the main index matrix which specifies the order of simulation runs
B_mN = length(B_m); B_VN = length(B_V); B_TN = length(B_T);
reshape([1:B_mN*2*ceil (B_VN/2)],B_mN*2,ceil (B_VN/2)); ans([1:B_mN,B_mN*2:-1:B_mN+1], :);
B_I = reshape(ans(l:B_mN*B_vN),B_mN,B_vN); B_I2 = zeros(B_mN,B_vN);

% Create some more special variables used in the main loop of the script
n = config.simdata.numloads + 1;
B_dA = zeros(B_mN,B_VN,B_TN); B__ B_dA;
B_uO = zeros(n*6,B_mN,B_VN); B_rO = B_UO; B_xt B_UO; B_dO = zeros(4,B_mN,B_VN);

% Set the position & orientation vector, the control vector and the trim state
% vector for the first step

B_rO(:,B_i,B_j) config.trimdata. rO;
B_dO(:,B_i,B_j) config.trimdata.dO';
B_xt(:,B_i,B_j) = config.trimdata.xt';

el se

fprintf('\n Resuming script ... \n')
end

% set some globals used by hsltrim and hslsim in each simulation run
global HDAT_ LDAT_ CDAT_

B_TR = cputime;

% Initialise the hsltrim variables
ghsLinit

B_links = LDAT_(2).s.Links.Data(:,3);
B_patches = LDAT_(2).s.patches.Data(:,3);

% Start the main loop
for B_ii = l:B_mN*B_vN

% Identify the current airspeed and load mass vector indices
[B_i ,B_j] = find((B_I == B_ii)&(B__(:,: ,1) < 2));

% skip this step if the model has not been trimmed and simulated at this point
if -isempty(B_i)

% Adjust the load mass and inertia, and the trim velocity for this step
config.loaddata(l).loadweight = B_m(B_i);
config.loaddata(l).loadinertia = diag([ 0.33 1.20 1.20 ]*B_m(B_i));
config.simdata.trimvel(l) = B_V(B_j)/0.5925;

% Display the current trim step
if (B__(B_i,B_j,l) < 1)

fprintf('\n##### V = %5.1fkn m = %4.0flb
##################################################\n' ,B_V(B_j),B_m(B_i));

end

% Set the in tial trim index either to the current, or to the previous value
if B_i 1

B_i 2 = B_ii; B i2 = B_i; B_j2 = B_j; B_I2(B_i ,B_j) = B_ii2;
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el se
B ii2 = B_ii-1; [Li2,B_j2] = find(LI

end

% LOOp while the system does not trim
while (B__ (B_i,B_j,l) < 1)

% Each time, setting the initial trim variables to previous values
config.trimdata.rO B_rO(:,B_i2,B_j2);
config.trimdata.dO = B_dO(:,B_i2,B_j2)';
config.trimdata.xt = B_xt(:,B_i2,B_j2)';

% BALANCE LOADS: INELASTIC CONFIGURATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set the sling model to inelastic
config.simdata.slingmod = 'inelastic';

% Initialise the hsltrim variables
ghsLinit

% calculate and adjust the load's vertical cg location
2Cg = (25.0 - (23.0*B_m(1) + 23.0*(B_m(B_j)-B_m(1))A2j(B_m(end)-B_m(1)))jB_m(B_j))j12;
LDAT_(2).S.Links.Data(: ,3) = B_links - 2Cg;
LDAT_(2).s.patches.Data(:,3) = B_patches - 2Cg;

if pref_.verbose, fprintf('\n Balancing loads (inelastic config) ... \n'), end

% Set the initial load position directly beneath the fixed helicopter
jj = 3+[1:3];
if -any(rO([jj,n*3+jj]))

rO([jj,n*3+jj]) = hsLsetload(uO, rO, [],j);
end

% Bring up the replay window if requested
if Prefs. replaywin

hr = repl ay (0, rO (1: n" 3) , - rO ( [1 : 3] ,"one s (1, n) , 1) , , rO (n" 3+ [1 :n" 3]) , , [] , s) ;
end

% Balance the load beneath the fixed helicopter
hslload

% update the load positional trim data
config.trimdata.rO = rO;

% BALANCE LOADS: ELASTIC CONFIGURATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% set the sling model to elastic
config.simdata.slingmod = 'elastic';

% Initialise the hsltrim variables
ghsLinit

if pref_.verbose, fprintf('\n Balancing loads (elastic config) ... \n'), end

% Set the initial load position directly beneath the fixed helicopter
jj = 3+[1:3];
if -any(rO([jj,n*3+jj]))

rO([jj,n"3+jj]) = hsLsetload(uO, rO, [],j);
end

% Bring up the replay window if requested
if prefs.replaywin

hr = replay (0, rO (1: n" 3) , - rO ( [1 : 3] ,"one s (1, n) , 1) , , rO (n" 3+ [1 :n" 3]) , , [] , s) ;
end

% Balance the load beneath the fixed helicopter
hslload

% update the load positional trim data
config.trimdata.rO = rO;

% TRIM HELICOPTER + LOADS (ELASTIC CONFIG) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialise the hsltrim variables
ghsLinit

% Bring up the replay window if requested
if Prefs. replaywin

hr = replay (0, rO (1: n" 3) , - rO ( [1 : 3] ,"one s (1, n) , 1) , , rO (n" 3+ [1 :n" 3]) , , [] , s) ;
end
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% Set the trim time-control matrix to it's initial value
TDO = zeros(1,5,2); TDO(1,2:5,1) = dO;

% Trim the helicopter load system
hsltrim

% update the trim control vector
dO = TDO(1,2:5,1);

% Check the residual (out-of-balance) external force sum against some tolerance
if (ff > 1e-1)

% Trim point not reached
if B ii2 == 1

% No earlier trim points remaining; Exit the script
fp ri ntf (' \n ' )
error(sprintf('Large error: F %g N = %g; Exiting ... ' ,ff,Bii));

el se
% Try earlier trim point for initial values

B_ii2 = B_ii2-1; [B_i2,B_j2] find(B_I == B_ii2); B_I2(B_i ,B_j) = B_ii2;

fp ri ntf (' \n ' )
warning(sprintf('Large error: F = %g N = %g; Attempting re-trim from V = %5.1fkn m

%4.0flb' ,ff,B_ii,B_V(B_j2),B_m(B_i2)));
fp ri ntf (' \n ' )

end
% Flag the corresponding special matrix element to denote an untrimmed state

B_(Li , B_j , :) = 0;
else

% Trim point successfully reached - update the special matrices for the
% configuration velocity, position & orientation, controls and trim state

B_UO(:,B_i,B_j) = uO; B_rO(:,B_i,B_j) = rO;
B_dO(:,B_i,B_j) = dO'; B_xt(:,B_i,B_j) = XT';

config.trimdata.rO rO;
config.trimdata.dO = dO;
config.trimdata.xt = XT'

% Flag the corresponding special matrix element to denote a trimmed state
B_ (B_i , B_j , :) = 1;

end
end

% Find the simulation cases that have yet to be run for the current trim point
B_K = find(B_(B_i ,B_j,:) < 2)';

% And loop through those
for B_k = B_K

% update the control magnitudes
config.ctrldata(2).magnitude
config.ctrldata(3).magnitude

% Display the current simulation step
fprintf('\n##### D = %3.1fin\n' ,B_T(B_k));

% SIMULATE HELICOPTER + LOADS (ELASTIC CON FIG) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialise the hslsim variables
ghsLinit

% Bring up the replay window if requested
if prefs. replaywin

hr = replay (0, rO (1: nt' 3) , - rO ( [1 : 3] , t'one s (1, n) , 1) , , rO (nt' 3+ [1 :nt' 3]) , , [] , s) ;
end

% Set the trim time-control matrix to its initial value
TDO = zeros(1,5,2); TDO(1,2:5,1) = dO;

% set the configuration velocity vector, the position & orientation vector and
% the full state vector to their initial values

u = uO; r = rO; x = [u; r];

% Generate the control inputs for the specified time sequence
ghsLctrl

% Offset the time-control matrix by its trim value
TD(:,2:5,1) = TD(: ,2:5,1)+ones(N,1)*TDO(1,2:5,1);

% Run the simulation
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hslsim

% close the replay window if present
if Prefs. replaywin

close(hr)
end

% Extract the (open and closed loop) time-control input matrices
C = TD(:,2:5,1); CC = TDD(:,2:5);

% Create a struct with the simulation output
Data = struct('time' ,t, .

'state' ,X, .
'control',c, .
'modcontrol' ,CC,
'bodyvel' ,va, ...
'bodyacc' ,vadot, .
, cab1eang1e' ,Acj, .
'loaddeviation' ,Ajj, ...
'cab1eforce' ,FC);

% Append the m-file name with airspeed, load mass and control magnitude fields
B_mfile = sprintf([B_title, '­

V%03dM%03dD%02d'],round(B_v(B_j)),round(B_m(B_i)/10),round(B_T(B_k)*10));

% Save the config and Data structs to file
save ([B_mdi r, B_mfi 1e] , 'Confi g' , 'Data')

% update the maximum load deviation special matrix
B_dA(B_i,B_j,B_k) = max(abs(Ajj(:,2)));

% GENERATE VRML MODEL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reset the load's vertical cg location to centre - necessary for hslvrml
LDAT_(2).s.Links.Data(: ,3) = B_links;
LDAT_(2).s.patches.Data(:,3) = B_patches;

% Adjust the load position history to account for the new cg location
for i = l:N

xCi ,n*6+3+[1:3]) = x(i,n*6+3+[1:3])-[0,0,zcg]*euler(x(i ,n*9+3+[1:3]));
end

% Fill the first element of wrlfiles with the output filename
wrlfiles{l} = [prefs.vrmldir,B_title,'\',B_mfile,'.wrl'];

% Define the user and fixed-inertial viewpoint offsets
rv = [ 75 75 ° ];
dx = X - ones (size (x, 1), l)"X(l, :);

% place fixed-inertial at midpoint + offset, but above ground
ri = (min(dx(:,n*6+[1:3])) + max(dx(:,n*6+[1:3])))/2 + [ ° 100 100 ];
if ri(3) > (-x(1,n*6+3) - 5), ri(3) = -X(1,n*6+3) - 5; end

if pref_.verbose, fprintf(' Generating VRML ... \n\n'), end

% Generate the VRML model
hslvrml(wrlfiles{:},t,x(:,n*6+[1:n*6]),c,1,pi/4, rv, ri)

% If gzip exists, compress the VRML file
if -isempty(prefs.gzipexe)

[s,w] = system(['"',prefs.gzipexe,''' "',prefs.vrmldir,B_title,'\',B_mfile,'.wrl" -c >
"', Prefs. vrmldi r, B_title, '\' ,B_mfile, '.wrz' J);

if isempty(w), delete([prefs.vrmldi r,B_title, '\' ,B_mfile,' .wrl' J); end
end

% Adjust the load's vertical cg location again
LDAT_(2).s.Links.Data(: ,3) = B_links - zcg;
LDAT_(2).s.patches.Data(:,3) = B_patches - zcg;

% Flag the corresponding special matrix element to denote a simulated state
B__ (B_i,B_j,B_k) = 2;

end

% Append the cputime
B_TR = [B_TR,cputime];

if B_ii < B_mN*B_vN
% Estimate and display the time remalnlng until completion

fprintf(' Progress: %g/%g Time remaining: %s\n\n',
B_ii,B_mN*B_VN,dtime((B_mN*B_VN-B_ii)*mean(diff(B_TR))))

el se

48



% Display the total execution time
fprintf(' Total execution time: %s\n\n' ,dtime(B_TR(end)-B_TR(l)))

end
end

end

% Save all variables, including the special variables to file
save([B_mdir,B_titleJ)

DSTO-TN-0855

49



Page classification: UNCLASSIFIED

P 1 ifiage c ass cation: UNCLASSIFlED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT

Helicopter Slung-Load Simulation Toolbox for use with 1v1ATLAB@ CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S) 5. CORPORATE AUTHOR

Roger A. Stuckey DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend Victoria 3207 Australia

6a. DSfO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE

DSTO-TN-0855 AR-014-325 Technic al Nate August 2008

8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF REFERENCES

2003/70263 ARM 07/038 ARMY 49 20

13. URL on the World Wide Web 14. RELEASE AUTHORITY

http:/ / vvww.dsto.defence.gov.auj corporate/ reportsjDSTO- Chief, Air Operations Division
TN-0855.pdf

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEPS ENQUIRIES OUTSIDE STATED LTh1ITATIONS SHOULD BE REFERRED THROlK:;H DOCU1vfENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Y",

18. DSTO RFSEARCH LIBRARY THFSAURUS http://web-vic.dsto.defence.gov.au/workareas/hbrary /resources! dsto thesaurus.shtml

Chinook helicopter; Slung load; Modelling; Simulation

19. ABSTRACT

This document outlines the Helicopter Slung Load Simulation (HSLSIM) Toolbox which is a set of utilities for the simulation, analysis
and display of the flight-dynamic response of helicopters with various external load configurations within the MATLAB® software
environment. Instructions and examples are provided for its operation and subsequent modifications. The helicopter studied is the CH-
47D, with the load tvpes includine: rectane:ular and cvlindrical containers as well as plate and airfoil shapes.

..


